Removing weekly administrative noise in the daily count of COVID-19 new cases. Application to the computation of Rt

Author:

Alvarez LuisORCID,Colom Miguel,Morel Jean-Michel

Abstract

AbstractThe way each country counts and reports the incident cases of SARS-CoV-2 infections is strongly affected by the “weekend effect”. During the weekend, fewer tests are carried out and there is a delay in the registration of cases. This introduces an “administrative noise” that can strongly disturb the calculation of trend estimators such as the effective reproduction numberR(t). In this work we propose a procedure to correct the incidence curve and obtain a better fit between the number of infected and the one expected using the renewal equation. The classic way to deal with the administrative noise is to invoke its weekly period and therefore to filter the incidence curve by a seven days sliding mean. Yet this has three drawbacks: the first one is a loss of resolution. The second one is that a 7-day mean filter hinders the estimate of the effective reproduction numberR(t) in the last three days before present. The third drawback of a mean filter is that it implicitly assumes the administrative noise to be additive and time invariant. The present study supports the idea that the administrative is better dealt with as being both periodic and multiplicative. The simple method that derives from these assumptions amount to multiplying the number of infected by a correcting factor which depends on the day of the week. This correcting factor is estimated from the incidence curve itself. The validity of the method is demonstrated by its positive impact on the accuracy of an the estimates ofR(t). To exemplify the advantages of the multiplicative periodic correction, we apply it to Sweden, Germany, France and Spain. We observe that the estimated administrative noise is country dependent, and that the proposed strategy manages to reduce it noise considerably. An implementation of this technique is available atwww.ipol.im/ern, where it can be tested on the daily incidence curves of an extensive list of states and geographic areas provided by the European Centre for Disease Prevention and Control.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3