The movement of a leaf-derived mobile AGL24 mRNA specifies floral organ identity in Arabidopsis

Author:

Huang Nien-ChenORCID,Tien Huan-ChiORCID,Yu Tien-ShinORCID

Abstract

AbstractCell-to-cell and inter-organ communication play pivotal roles in synchronizing and coordinating plant development. In addition to serving as templates for protein translation within cells, many mRNAs can move and exert their function non-cell-autonomously. However, because the proteins encoded by some mobile mRNAs are also mobile, whether the systemic function of mobile mRNAs is attributed to proteins transported distally or translated locally remains controversial. Here, we show that Arabidopsis AGAMOUS-LIKE 24 (AGL24) mRNA acts as a leaf-derived signal to specify meristem identity. AGL24 is expressed in both apex and leaves. Upon floral meristem (FM) transition, apex-expressed AGL24 is transcriptionally inhibited by APETALA1 (AP1) to ensure FM differentiation. The leaf-expressed AGL24 can act as a mobile signal to bypass AP1 inhibition and revert FM differentiation. Although AGL24 mRNA is expressed in leaves, AGL24 protein is rapidly degraded in leaves. In contrast, AGL24 mRNA can move long distance from leaf to apex where the translocated AGL24 mRNAs can be used as templates to translate into proteins. Thus, the movement of AGL24 mRNA can provide the developmental plasticity to fit with environmental dynamics.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3