PALM: Patient-centered Treatment Ranking via Large-scale Multivariate Network Meta-analysis

Author:

Duan Rui,Tong Jiayi,Lin LifengORCID,Levine Lisa D,Sammel Mary D,Stoddard Joel,Li Tianjing,Schmid Christopher H,Chu HaitaoORCID,Chen Yong

Abstract

AbstractThe growing number of available treatment options have led to urgent needs for reliable answers when choosing the best course of treatment for a patient. As it is often infeasible to compare a large number of treatments in a single randomized controlled trial, multivariate network meta-analyses (NMAs) are used to synthesize evidence from existing trials of a subset of the available treatments, where outcomes related to both efficacy and safety are considered simultaneously. However, these large-scale multiple-outcome NMAs have created challenges to existing methods due to the increasingly complexity of the unknown correlation structures between different outcomes and treatment comparisons. In this paper, we proposed a new framework for PAtient-centered treatment ranking via Large-scale Multivariate network meta-analysis, termed as PALM, which includes a parsimonious modeling approach, a fast algorithm for parameter estimation and inference, a novel visualization tool for comparing treatments with multivariate outcomes termed as the star plot, as well as personalized treatment ranking procedures taking into account the individual’s considerations on multiple outcomes. In application to an NMA that compares 14 treatment options for labor induction over five modalities, we provided a comprehensive illustration of the proposed framework and demonstrated its computational efficiency and practicality. Our analysis leads to new insights on comparing these 14 treatment options based on joint inference of multiple outcomes that cannot be obtained from univariate NMAs, and novel visualizations of evidence to support patient-centered clinical decision making.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3