Abstract
AbstractObjectiveReal-time functional magnetic resonance imaging neurofeedback (rt-fMRI-NF) is a non-invasive MRI procedure allowing examined participants to learn to self-regulate brain activity by performing mental tasks. A novel two-step rt-fMRI-NF procedure is proposed whereby the feedback display is updated in real-time based on high level (semantic) representations of experimental stimuli via real-time representational similarity analysis of multi-voxel patterns of brain activity.ApproachIn a localizer session, the stimuli become associated with anchored points on a two-dimensional representational space where distances approximate between-pattern (dis)similarities. In the NF session, participants modulate their brain response, displayed as a movable point, to engage in a specific neural representation. The developed method pipeline is verified in a proof-of-concept rt-fMRI-NF study at 7 Tesla using imagery of concrete objects. The dependence on noise is more systematically assessed on artificial fMRI data with similar (simulated) spatio-temporal structure and variable (injected) signal and noise. A series of brain activity patterns from the ventral visual cortex is evaluated via on-line and off-line analyses and the performances of the method are reported under different noise conditions.Main resultsThe participant in the proof-of-concept study exhibited robust activation patterns in the localizer session and managed to control the neural representation of a stimulus towards the selected target, in the NF session. The offline analyses validated the rt-fMRI-NF results, showing that the rapid convergence to the target representation is noise-dependent.SignificanceOur proof-of-concept study demonstrates the potential of semantic NF designs where the participant navigates among different mental states. Compared to traditional NF designs (e.g. using a thermometer display to set the level of the neural signal), the proposed approach provides content-specific feedback to the participant and extra degrees of freedom to the experimenter enabling real-time control of the neural activity towards a target brain state without suggesting a specific mental strategy to the subject.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献