Viscophobic turning dictates microalgae transport in viscosity gradients

Author:

Stehnach Michael R.ORCID,Waisbord Nicolas,Walkama Derek M.ORCID,Guasto Jeffrey S.ORCID

Abstract

Gradients in fluid viscosity characterize microbiomes ranging from mucus layers on marine organisms1 and human viscera2,3 to biofilms4. While such environments are widely recognized for their protective effects against pathogens and their ability to influence cell motility2,5, the physical mechanisms regulating cell transport in viscosity gradients remain elusive6–8, primarily due to a lack of quantitative observations. Through microfluidic experiments, we directly observe the transport of model biflagellated microalgae (Chlamydomonas reinhardtii) in controlled viscosity gradients. We show that despite their locally reduced swimming speed, the expected cell accumulation in the viscous region9,10 is stifled by a viscophobic turning motility. This deterministic cell rotation – consistent with a flagellar thrust imbalance11,12 – reorients the swimmers down the gradient, causing their accumulation in the low viscosity zones for sufficiently strong gradients. Corroborated by Langevin simulations and a three-point force model of cell propulsion, our results illustrate how the competition between viscophobic turning and viscous slowdown ultimately dictates the fate of population scale microbial transport in viscosity gradients.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3