Abstract
Quantitative characterization of biotechnological production processes requires the determination of different key performance indicators (KPIs) such as titer, rate and yield. Classically, these KPIs can be derived by combining black-box bioprocess modelling with non-linear regression for model parameter estimation. The presented pyFOOMB package enables a guided and flexible implementation of bioprocess models in the form of ordinary differential equation systems (ODEs). By building on Python as powerful and multi-purpose programming language, ODEs can be formulated in an object-oriented manner, which facilitates their modular design, reusability and extensibility. Once the model is implemented, seamless integration and analysis of the experimental data is supported by various Python packages that are already available. In particular, for the iterative workflow of experimental data generation and subsequent model parameter estimation we employed the concept of replicate model instances, which are linked by common sets of parameters with global or local properties. For the description of multi-stage processes, discontinuities in the right-hand sides of the differential equations are supported via event handling using the freely available assimulo package. Optimization problems can be solved by making use of a parallelized version of the generalized island approach provided by the pygmo package. Furthermore, pyFOOMB in combination with Jupyter notebooks also supports education in bioprocess engineering and the applied learning of Python as scientific programming language. Finally, the applicability and strengths of pyFOOMB will be demonstrated by a comprehensive collection of notebook examples.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献