Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET

Author:

Peter Martin F.,Gebhardt Christian,Mächtel Rebecca,Glaenzer Janin,Thomas Gavin H.,Cordes ThorbenORCID,Hagelueken Gregor

Abstract

AbstractPulsed electron-electron double resonance spectroscopy (PELDOR or DEER) and single molecule Förster resonance energy transfer spectroscopy (smFRET) are recent additions to the toolbox of integrative structural biology. Both methods are frequently used to visualize conformational changes and to determine nanometer-scale distances in biomacromolecules including proteins and nucleic acids. A prerequisite for the application of PELDOR/DEER and smFRET is the presence of suitable spin centers or fluorophores in the target molecule, which are usually introduced via chemical biology methods. The application portfolio of the two methods is overlapping: each allows determination of distances, to monitor distance changes and to visualize conformational heterogeneity and -dynamics. Both methods can provide qualitative information that facilitates mechanistic understanding, for instance on conformational changes, as well as quantitative data for structural modelling. Despite their broad application, a comprehensive comparison of the accuracy of PELDOR/DEER and smFRET is still missing and we set out here to fill this gap. For this purpose, we prepared a library of double cysteine mutants of three well-studied substrate binding proteins that undergo large-scale conformational changes upon ligand binding. The distances between the introduced spin- or fluorescence labels were determined via PELDOR/DEER and smFRET, using established standard experimental protocols and data analysis routines. The experiments were conducted in the presence and absence of the natural ligands to investigate how well the ligand-induced conformational changes could be detected by the two methods. Overall, we found good agreement for the determined distances, yet some surprising inconsistencies occurred. In our set of experiments, we identified the source of discrepancies as the use of cryoprotectants for PELDOR/DEER and label-protein interactions for smFRET. Our study highlights strength and weaknesses of both methods and paves the way for a higher confidence in quantitative comparison of PELDOR/DEER and smFRET results in the future.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3