Genome-wide association studies reveal the complex genetic architecture of DMI fungicide resistance in Cercospora beticola

Author:

Spanner RebeccaORCID,Taliadoros Demetris,Richards JonathanORCID,Rivera-Varas Viviana,Neubauer Jonathan,Natwick Mari,Hamilton OliviaORCID,Vaghefi NiloofarORCID,Pethybridge SarahORCID,Secor Gary A.ORCID,Friesen Timothy L.ORCID,Stukenbrock Eva H.ORCID,Bolton Melvin D.ORCID

Abstract

AbstractCercospora leaf spot is the most important disease of sugar beet worldwide. The disease is caused by the fungus Cercospora beticola and is managed principally by timely application of fungicides including those of the sterol demethylation inhibitor (DMI) class. However, reliance on DMIs has caused an increase in resistance to this class of fungicides in multiple C. beticola populations. To better understand the genetic and evolutionary basis for resistance in C. beticola, a genome-wide association study (GWAS) and selective sweep analysis were conducted for the first time in this fungal plant pathogen. We performed whole genome resequencing of 190 C. beticola isolates predominantly from North Dakota and Minnesota that were phenotyped for sensitivity to tetraconazole, the most widely used DMI fungicide in this region. GWAS identified mutations in genes associated with DMI fungicide resistance including a Regulator of G-protein Signaling (RGS) protein, an ATP-binding cassette (ABC) pleiotropic drug resistance transporter, a dual-specificity tyrosine phosphorylation-regulated kinase (DYRK), and a gene annotated as a hypothetical protein. A SNP upstream of CbCYP51, the gene encoding the target of DMI fungicides, was also identified via GWAS. Haplotype analysis of CbCYP51 identified a synonymous mutation (E170) in high linkage disequilibrium with the upstream SNP, and multiple non-synonymous mutations (L144F, I387M and Y464S) associated with DMI resistance. Additionally, a putative codon bias effect for the L144F substitution was identified that generated different resistance potentials. We also identified a CbCYP51 paralog in C. beticola, CbCYP51-like, with high protein homology to CYP51C found uniquely in Fusarium species but CbCYP51-like does not appear to influence DMI sensitivity. Genome-wide scans of selection showed that several of the GWAS mutations for fungicide resistance resided in regions that have recently undergone a selective sweep. Using radial plate growth on selected media as a fitness proxy, we did not find a trade-off associated with DMI fungicide resistance suggesting that resistance mutations can persist in C. beticola populations. Taken together, we show that population genomic data from a crop pathogen can allow the identification of mutations conferring fungicide resistance and inform about their origins in the pathogen population.

Publisher

Cold Spring Harbor Laboratory

Reference181 articles.

1. RAiSD detects positive selection based on multiple signatures of a selective sweep and SNP vectors;Communications Biology,2018

2. OmegaPlus: a scalable tool for rapid detection of selective sweeps in whole-genome datasets

3. Andrews, S. 2017. FastQC: a quality control tool for high throughput sequence data. 2010.

4. Molecular mechanism of P-glycoprotein assembly into cellular membranes;Current Protein and Peptide Science,2002

5. DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3