From local spectral species to global spectral communities: a benchmark for ecosystem diversity estimate by remote sensing

Author:

Rocchini Duccio,Salvatori Nicole,Beierkuhnlein Carl,Chiarucci Alessandro,de Boissieu Florian,Förster Michael,Garzon-Lopez Carol X.,Gillespie Thomas W.,Hauffe Heidi C.,He Kate S.,Kleinschmit Birgit,Lenoir Jonathan,Malavasi Marco,Moudrý Vítězslav,Nagendra Harini,Payne Davnah,Šímová Petra,Torresani Michele,Wegmann Martin,Féret Jean-Baptiste

Abstract

AbstractIn the light of unprecedented change in global biodiversity, real-time and accurate ecosystem and biodiversity assessments are becoming increasingly essential. Nevertheless, estimation of biodiversity using ecological field data can be difficult for several reasons. For instance, for very large areas, it is challenging to collect data that provide reliable information. Some of these restrictions in Earth observation can be avoided through the use of remote sensing approaches. Various studies have estimated biodiversity on the basis of the Spectral Variation Hypothesis (SVH). According to this hypothesis, spectral heterogeneity over the different pixel units of a spatial grid reflects a higher niche heterogeneity, allowing more organisms to coexist. Recently, the spectral species concept has been derived, following the consideration that spectral heterogeneity at a landscape scale corresponds to a combination of subspaces sharing a similar spectral signature. With the use of high resolution remote sensing data, on a local scale, these subspaces can be identified as separate spectral entities, the so called “spectral species”. Our approach extends this concept over wide spatial extents and to a higher level of biological organization. We applied this method to MODIS imagery data across Europe. Obviously, in this case, a spectral species identified by MODIS is not associated to a single plant species in the field but rather to a species assemblage, habitat, or ecosystem. Based on such spectral information, we propose a straightforward method to derive α- (local relative abundance and richness of spectral species) and β-diversity (turnover of spectral species) maps over wide geographical areas.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3