Forecasting the spread of COVID19 in Hungary

Author:

Khanday Owais Mujtaba,Dadvandipour Samad,Lone Mohd. Aaqib

Abstract

AbstractTime series analysis of the COVID19/ SARS-CoV-2 spread in Hungary is presented. Different methods effective for short-term forecasting are applied to the dataset, and predictions are made for the next 20 days. Autoregression and other exponential smoothing methods are applied to the dataset. SIR model is used and predicted 64% of the population could be infected by the virus considering the whole population is susceptible to be infectious Autoregression, and exponential smoothing methods indicated there would be more than a 60% increase in the cases in the coming 20 days. The doubling of the number of total cases is found to around 16 days using an effective reproduction number.

Publisher

Cold Spring Harbor Laboratory

Reference18 articles.

1. [https://www.mediaite.com/news/harvard-professor-sounds-alarmon-likely-coronavirus-pandemic-40-to-70-of-world-could-be-infected-this-year/] Accessed: September 2020.

2. Haren P , Simchi-Levi D. Harvard Business Review. How Coronavirus Could Impact the Global SupplyChain by Mid-March. [ https://hbr.org/2020/02/how-coronavirus-could-impact-the-global-supply-chainby-mid-march] Accessed: October 2020.

3. Winck B . Markets Insider. JPMorgan officially forecasts a coronavirus-driven recession will rock the US and Europe by July. [ https://markets.businessinsider.com/news/stocks/coronavirus-fuel-recessionforecast-us-europe-economic-july-market-jpmorgan-2020-3-1028994637] Accessed: October 2020

4. Amodio, E. , Vitale, F. , Cimino, L. , Casuccio, A. , & Tramuto, F. , “Outbreak of novel coronavirus (SARS-Cov-2): first evidence from international scientific literature and pending questions”, Healthcare vol, 8, no. 1, p. 51.

5. Prediction and analysis of Coronavirus Disease 2019;arXiv preprint

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Theta models for daily pandemic data;Boletim da Sociedade Paranaense de Matemática;2024-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3