Rat perichondrium transplanted to articular cartilage defects forms articular-like, hyaline cartilage

Author:

Dou Zelong,Muder Daniel,Baroncelli Marta,Bendre Ameya,Gkourogianni Alexandra,Ottosson Lars,Vedung TorbjörnORCID,Nilsson OlaORCID

Abstract

AbstractReconstruction of articular surfaces destroyed by infection or trauma is hampered by the lack of suitable graft tissues. Perichondrium autotransplants have been used for this purpose. However, the role of the transplanted perichondrium in the healing of resurfaced joints have not been investigated. Perichondrial and periosteal tissues were harvested from rats hemizygous for a ubiquitously expressed enhanced green fluorescent protein (EGFP) transgene and transplanted into full-thickness articular cartilage defects at the trochlear groove of distal femur in wild-type littermates. As an additional control, cartilage defects were left without a transplant (no transplant control). Distal femurs were collected 3, 14, 56, 112 days after surgery. Transplanted cells and their progenies were readily detected in the defects of perichondrium and periosteum transplanted animals but not in defects left without a transplant. Perichondrium transplants expressed SOX9 and with time differentiated into a hyaline cartilage that expanded and filled out the defects with Col2a1-positive chondrocytes and a matrix rich in proteoglycans. Interestingly, at later timepoints the cartilaginous perichondrium transplants were actively remodeled into bone at the transplant-bone interface and at post-surgery day 112 EGFP-positive perichondrium cells at the articular surface were positive for Prg4. In addition, both perichondrium and periosteum transplants contributed cells to the subchondral bone and bone marrow, suggesting differentiation into osteoblast/osteocytes as well as bone marrow cells. In summary, we found that perichondrium transplanted to articular cartilage defects develops into an articular-like, hyaline cartilage that integrates with the subchondral bone, and is maintained for an extended time. The findings indicate that perichondrium is a suitable tissue for repair and engineering of articular cartilage.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3