Abstract
AbstractEpigenetic regulators have been implicated in tumorigenesis of many types of cancer; however, their roles in endothelial cell cancers such as canine hemangiosarcoma (HSA) have not been studied. In this study, we found that lysine-specific demethylase 2B (Kdm2b) was highly expressed in HSA cell lines compared to normal canine endothelial cells. Silencing of Kdm2b in HSA cells resulted to increased cell death in vitro compared to the scramble control by inducing apoptosis through the inactivation of the DNA repair pathways and accumulation of DNA damage. Similarly, doxycycline-induced Kdm2b silencing in tumor xenografts resulted to decreased tumor sizes compared to the scramble control. Furthermore, Kdm2b was also highly expressed in clinical cases of HSA, and its expression levels was higher than in hemangioma, a benign counterpart of HSA. Based on these results, we hypothesized that pharmacological Kdm2b inhibition can also induce HSA cell death and can be used as an alternative treatment for HSA. We treated HSA cells with GSK-J4, a histone demethylase inhibitor, and found that GSK-J4 treatment also induced apoptosis and cell death. On top of that, GSK-J4 treatment in HSA tumor-bearing mice decreased tumor sizes without any obvious side-effects. In this study, we demonstrated that Kdm2b acts as an oncogene in HSA by enhancing DNA damage response and can be used as a biomarker to differentiate HSA from hemangioma. Moreover, we indicated that histone demethylase inhibitor GSK-J4 can be used as a therapeutic alternative to doxorubicin for HSA treatment.
Publisher
Cold Spring Harbor Laboratory