Endothelial exosome plays functional role during rickettsial infection

Author:

Liu Yakun,Zhou Changcheng,Su Zhengchen,Chang Qing,Qiu Yuan,Bei Jiani,Gaitas Angelo,Xiao Jie,Drelich Alexandra,Khanipov KamilORCID,Jin Yang,Golovko Georgiy,Saito Tais B.,Gong Bin

Abstract

AbstractSpotted fever group rickettsioses (SFRs) are devastating human infections. Vascular endothelial cells (ECs) are the primary targets of infection. Edema resulting from EC barrier dysfunction occurs in the brain and lungs in most cases of lethal SFR, but the underlying mechanisms remain unclear. The aim of the study is to explore the potential role ofRickettsia(R)-infected, EC-derived exosomes (Exos) during infection. Using size-exclusion chromatography (SEC), we purified Exos from conditioned, filtered, bacteria-free media collected fromR-infected human umbilical vein ECs (HUVECs) (R-ECExos) and plasma ofR-infected mice (R-plsExos). We observed that rickettsial infection increases the release of heterogeneous plsExos, but endothelial exosomal size, morphology, and production were not significantly altered following infection. Compared to normal plsExos and ECExos, bothR-plsExos andR-ECExos induced dysfunction of recipient normal brain microvascular Ecs (BMECs). The effect ofR-plsExos on mouse recipient BMEC barrier function is dose-dependent. The effect ofR-ECExos on human recipient BMEC barrier function is dependent on exosomal RNA cargo. Next-generation sequencing analysis and stem-loop quantitative reverse transcription PCR (RT-qPCR) validation revealed thatRinfection triggered the selective enrichment of endothelial exosomal mir-23a and mir-30b, which target the endothelial barrier. To our knowledge, this is the first report on the functional role of extracellular vesicles following infection by obligately intracellular bacteria.ImportanceSpotted fever group rickettsioses are devastating human infections. Vascular endothelial cells are the primary targets of infection. Edema resulting from endothelial barrier dysfunction occurs in the brain and lungs in most cases of lethal rickettsioses, but the underlying mechanisms remain unclear. The aim of the study is to explore the potential role ofRickettsia-infected, endothelial cell-derived exosomes during infection. We observed that rickettsial infection increases the release of heterogeneous plasma Exos, but endothelial exosomal size, morphology, and production were not significantly altered following infection.Rickettsia-infected, endothelial cell-derived exosomes induced dysfunction of recipient normal brain microvascular endothelial cells. The effect is dependent on exosomal RNA cargo. Next-generation sequencing analysis revealed that rickettsial infection triggered the selective enrichment of endothelial exosomal mir-23a and mir-30b, which target the endothelial barrier. To our knowledge, this is the first report on the functional role of extracellular vesicles following infection by obligately intracellular bacteria.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3