Plasticity after cortical stroke involves potentiating responses of pre-existing circuits but not functional remapping to new circuits

Author:

Zeiger William AORCID,Marosi Máté,Saggi Satvir,Noble Natalie,Samad Isa,Portera-Cailliau Carlos

Abstract

AbstractFunctional recovery after stroke is thought to be mediated by adaptive circuit plasticity, whereby surviving neurons assume the roles of those that died. This “remapping” hypothesis is based on human brain mapping studies showing apparent reorganization of cortical sensorimotor maps and animal studies documenting molecular and structural changes that could support circuit rewiring. However, definitive evidence of remapping is lacking, and other studies have suggested that maladaptive plasticity mechanisms, such as enhanced inhibition in peri-infarct cortex, might actually limit plasticity after stroke. Here we sought to directly test whether neurons can change their response selectivity after a stroke that destroys a single barrel (C1) within mouse primary somatosensory cortex. Using multimodal in vivo imaging approaches, including two-photon calcium imaging to longitudinally record sensory-evoked activity in peri-infarct cortex before and after stroke, we found no evidence to support the remapping hypothesis. In an attempt to promote plasticity via rehabilitation, we also tested the effects of forced use therapy by plucking all whiskers except the C1 whisker. Again, we failed to detect an increase in the number of C1 whisker-responsive neurons in surrounding barrels even 2 months after stroke. Instead, we found that forced use therapy potentiated sensory-evoked responses in a pool of surviving neurons that were already C1 whisker responsive by significantly increasing the reliability of their responses. Together, our results argue against the long-held theory of functional remapping after stroke, but support a plausible circuit-based mechanism for how rehabilitation may improve recovery of function.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3