Abstract
AbstractIn both sickle cell disease (SCD) and malaria, red blood cells (RBCs) are phagocytosed in the spleen, but receptor-ligand pairs mediating uptake have not been identified. Here, we report that patches of high mannose N-glycans (Man5-9GlcNAc2), expressed on diseased or oxidized RBC surfaces, bind the mannose receptor (CD206) on phagocytes to mediate clearance. Extravascular haemolysis in SCD correlates with high mannose glycan levels on RBCs. Infection of RBCs withPlasmodium falciparumexpose surface mannose N-glycans on healthy RBCs, which occurred at significantly higher levels on RBCs from subjects with sickle cell trait compared to those lacking haemoglobin S. The glycans were associated with high molecular weight complexes and protease-resistant, lower molecular weight fragments containing spectrin. Recognition of surface N-linked high mannose glycans, a novel response to cellular stress, is the first molecular mechanism common to both the pathogenesis of SCD and resistance to severe malaria in sickle cell trait.
Publisher
Cold Spring Harbor Laboratory