Conservation of affinity rather than sequence underlies a dynamic evolution of the motif-mediated p53/MDM2 interaction in teleosts

Author:

Mihalič FilipORCID,Arcila Dahiana,Pettersson Mats E.ORCID,Farkhondehkish Pouria,Andersson Eva,Andersson LeifORCID,Betancur-R Ricardo,Jemth PerORCID

Abstract

ABSTRACTThe transcription factor and cell cycle regulator p53 is marked for degradation by the ubiquitin ligase MDM2. The interaction between these two proteins is mediated by a conserved binding motif in the disordered p53 transactivation domain (p53TAD) and the folded SWIB domain in MDM2. The conserved motif in p53TAD from zebrafish displays a 20-fold weaker interaction with MDM2, compared to the interaction in human and chicken. To investigate this apparent difference, we tracked the molecular evolution of the p53TAD/MDM2 interaction among ray- finned fishes (Actinopterygii), the largest vertebrate clade. Intriguingly, phylogenetic analyses, ancestral sequence reconstructions, and binding experiments showed that different loss-of- affinity changes in the canonical binding motif within p53TAD have occurred repeatedly and convergently in different fish lineages, resulting in relatively low extant affinities (KD= 0.5-5 μM). However, for eleven different fish p53TAD/MDM2 interactions, non-conserved regions flanking the canonical motif increased the affinity 4 to 73-fold to be on par with the human interaction. Our findings suggest that compensating changes at conserved and non-conserved positions within the motif, as well as in flanking regions of low conservation, underlie a stabilizing selection of “functional affinity” in the p53TAD/MDM2 interaction. Such interplay complicates bioinformatic prediction of binding and call for experimental validation. Motif- mediated protein-protein interactions involving short binding motifs and folded interaction domains are very common across multicellular life. It is likely that evolution of affinity in motif- mediated interactions often involves an interplay between specific interactions made by conserved motif residues and non-specific interactions by non-conserved disordered regions.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3