Domain-PFP: Protein Function Prediction Using Function-Aware Domain Embedding Representations

Author:

Ibtehaz NabilORCID,Kagaya Yuki,Kihara DaisukeORCID

Abstract

AbstractDomains are functional and structural units of proteins that govern various biological functions performed by the proteins. Therefore, the characterization of domains in a protein can serve as a proper functional representation of proteins. Here, we employ a self-supervised protocol to derive functionally consistent representations for domains by learning domain-Gene Ontology (GO) co-occurrences and associations. The domain embeddings we constructed turned out to be effective in performing actual function prediction tasks. Extensive evaluations showed that protein representations using the domain embeddings are superior to those of large-scale protein language models in GO prediction tasks. Moreover, the new function prediction method built on the domain embeddings, named Domain-PFP, significantly outperformed the state-of-the-art function predictors. Additionally, Domain-PFP demonstrated competitive performance in the CAFA3 evaluation, achieving overall the best performance among the top teams that participated in the assessment.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3