Protozoan predation enhances stress resistance and antibiotic tolerance in the opportunistic pathogenBurkholderia cenocepaciaby triggering the SOS response

Author:

Morón ÁlvaroORCID,Belinchón Iván,Tarhouchi Alaa E.,Valenzuela Juan M.,de Francisco PatriciaORCID,Martín-González Ana,Amaro FranciscoORCID

Abstract

AbstractBacterivorous protists are thought to serve as training grounds for bacterial pathogens by subjecting them to the same hostile conditions that they will encounter in the human host. Bacteria that survive intracellular digestion exhibit enhanced virulence and stress resistance after successful passage through protozoa but the underlying mechanisms remain to be clarified. Here we show that the opportunistic pathogenBurkholderia cenocepaciasurvives phagocytosis by ciliates found in domestic and hospital sink drains, and viable bacteria are expelled packaged in respirable membrane vesicles with enhanced resistance to oxidative stress, desiccation and antibiotics, thereby contributing to bacterial dissemination in the environment. By using diverse methodological approaches, we demonstrate that reactive oxygen species generated within the protozoan phagosome promote the formation of persisters tolerant to ciprofloxacin by activating the bacterial SOS response. Besides, we show that genes encoding antioxidant enzymes are upregulated during passage through ciliates increasing bacterial resistance to oxidative radicals. We prove that suppression of the SOS response impairs bacterial intracellular survival and persister formation within protists. This study highlights the significance of protozoan food vacuoles as niches that foster bacterial adaptation in natural and built environments and suggests that persister switch within phagosomes may be a widespread phenomenon in bacteria surviving intracellular digestion.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3