Conserved molecular recognition by an intrinsically disordered region in the absence of sequence conservation

Author:

Alston Jhullian J.ORCID,Soranno AndreaORCID,Holehouse Alex S.ORCID

Abstract

ABSTRACTIntrinsically disordered regions (IDRs) are critical for cellular function, yet often appear to lack sequence conservation when assessed by multiple sequence alignments. This raises the question of if and how function can be encoded and preserved in these regions despite massive sequence variation. To address this question, we have applied coarse-grained molecular dynamics simulations to investigate non-specific RNA binding of coronavirus nucleocapsid proteins. Coronavirus nucleocapsid proteins consist of multiple interspersed disordered and folded domains that bind RNA. We focussed here on the first two domains of coronavirus nucleocapsid proteins, the disordered N-terminal domain (NTD) followed by the folded RNA binding domain (RBD). While the NTD is highly variable across evolution, the RBD is structurally conserved. This combination makes the NTD-RBD a convenient model system to explore the interplay between an IDR adjacent to a folded domain, and how changes in IDR sequence can influence molecular recognition of a partner. Our results reveal a surprising degree of sequence-specificity encoded by both the composition and the precise order of the amino acids in the NTD. The presence of an NTD can – depending on the sequence – either suppress or enhance RNA binding. Despite this sensitivity, large-scale variation in NTD sequences is possible while certain sequence features are retained. Consequently, a conformationally-conserved fuzzy RNA:protein complex is found across nucleocapsid protein orthologs, despite large-scale changes in both NTD sequence and RBD surface chemistry. Taken together, these insights shed light on the ability of disordered regions to preserve functional characteristics despite their sequence variability.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3