Structure ofC. elegansTMC-2 complex suggests roles of lipid-mediated subunit contacts in mechanosensory transduction

Author:

Clark SarahORCID,Jeong HanbinORCID,Posert RichORCID,Goehring April,Gouaux EricORCID

Abstract

AbstractMechanotransduction is the process by which a mechanical force, such as touch, is converted into an electrical signal. Transmembrane channel-like (TMC) proteins are an evolutionarily-conserved family of ion channels whose function has been linked to a variety of mechanosensory processes, including hearing and balance sensation in vertebrates and locomotion inDrosophila. The molecular features that tune homologous TMC ion channel complexes to diverse mechanical stimuli are unknown.Caenorhabditis elegansexpress two TMC homologs, TMC-1 and TMC-2, both of which are the likely pore-forming subunits of mechanosensitive ion channels but differ in their expression pattern and functional role in the worm. Here we present the single particle cryo-electron microscopy structure of the native TMC-2 complex isolated fromC. elegans. The complex is composed of two copies each of the pore-forming TMC-2 subunit, the calcium and integrin binding protein CALM-1 and the transmembrane inner ear protein TMIE. Comparison of the TMC-2 complex to the recently published cryo-EM structure of theC. elegansTMC-1 complex reveals differences in subunit composition and highlights conserved protein-lipid interactions, as well as other structural features, that together suggest a mechanism for TMC-mediated mechanosensory transduction.Significance StatementOne mechanism by which organisms sense their environment is through the perception of mechanical stimuli such as sound, touch, and vibration. Transmembrane channel-like (TMC) proteins are ion channels whose function has been linked to a variety of mechanosensitive processes, including hearing and balance in vertebrates and touch sensation in worms. The molecular mechanisms by which TMCs respond to mechanical stimuli are unknown. Here we present the structure of the TMC-2 complex isolated from worms. Comparison of the TMC-2 complex to the recently solved structure of the worm TMC-1 complex highlights common structural features that are likely important for sensing mechanical stimuli yet also illuminates key differences that may explain the distinct functional roles of TMC-1 and TMC-2 in the worm.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3