Evolution of hierarchical switching pattern in antigenic variation ofPlasmodium falciparumunder variable host immunity

Author:

Iragavarapu Gayathri Priya,Ghosh Bhaswar

Abstract

AbstractThe var genes family encoding the variants of the erythrocyte membrane protein ofPlasmodium falciparumis crucial for virulence of the parasite inside host. The transcriptional output of the var genes switches from one variant to other in a mutually exclusive fashion. It is proposed that a biased hierarchical switching pattern optimizes the growth and survival of the parasite inside the host. Apart from the hierarchical switching pattern, it is also well established that the intrinsic switching rates vary widely among the var genes. The centromeric protein like Var2csa is much more stable than the genes located at the telomeric and sub-telomeric regions of the chromosomes. In this study, we explored the evolutionary advantage achieved through selecting variable switching rates. Our theoretical analysis based on a mathematical model coupled with single cell RNA-seq data suggests that the variable switching rate is beneficial when cells expressing different variants are deferentially amenable to be cleared by the immune response. In fact, the variants which are cleared by the immune systems more efficiently are more stably expressed compared to a variant attacked by the immune system much less vigorously. The cells turn off expression of the variant quickly which is not cleared very efficiently. The evolutionary simulation shows that this strategy maximizes the growth of the parasite population under the presence of immune attack by the host. In corroboration with the result, we observed that stable variant has higher binding affinity to IgM from experimental data. Our study provides an evolutionary basis of widely variable switching rates of the var genes inPlasmodium falciparum.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3