Abstract
AbstractChromatin organization plays a crucial role in gene regulation by controlling the accessibility of DNA to transcription machinery. While significant progress has been made in understanding the regulatory role of clock proteins in circadian rhythms, how chromatin organization affects circadian rhythms remains poorly understood. Here, we employed ATAC-seq (Assay for Transposase-Accessible Chromatin with Sequencing) on FAC-sorted Drosophila clock neurons to assess genome-wide chromatin accessibility over the circadian cycle. We observed significant circadian oscillations in chromatin accessibility at promoter and enhancer regions of hundreds of genes, with enhanced accessibility either at dusk or dawn, which correlated with their peak transcriptional activity. Notably, genes with enhanced accessibility at dusk were enriched with E-box motifs, while those more accessible at dawn were enriched with VRI/PDP1-box motifs, indicating that they are regulated by the core circadian feedback loops, PER/CLK and VRI/PDP1, respectively. Further, we observed a complete loss of chromatin accessibility rhythms inper01null mutants, with chromatin consistently accessible throughout the circadian cycle, underscoring the critical role of Period protein in driving chromatin compaction during the repression phase. Together, this study demonstrates the significant role of chromatin organization in circadian regulation, revealing how the interplay between clock proteins and chromatin structure orchestrates the precise timing of biological processes throughout the day. This work further implies that variations in chromatin accessibility might play a central role in the generation of diverse circadian gene expression patterns in clock neurons.Significance StatementChromatin organization plays a critical role in gene regulation in development and in disease. In this study, we discovered robust circadian oscillations in the chromatin accessibility of regulatory elements of clock-regulated genes inDrosophilaclock neurons, with enhanced accessibility either at dusk or dawn, which correlated with their peak transcriptional activity. We found enrichment of E-box motifs in genes that exhibited enhanced accessibility at dusk, and enrichment of VRI/PDP1-box motifs in genes that exhibited higher accessibility at dawn. Moreover, the complete loss of chromatin accessibility rhythms inper01mutants highlights the essential role of the Period protein in driving chromatin compaction during the repression phase. This study highlights the significance of chromatin organization in the generation of ∼24-hour circadian rhythms.
Publisher
Cold Spring Harbor Laboratory