Efficient Sequence Embedding For SARS-CoV-2 Variants Classification

Author:

Ali Sarwan,Sardar Usama,Khan Imdad Ullah,Patterson Murray

Abstract

AbstractKernel-based methods, such as Support Vector Machines (SVM), have demonstrated their utility in various machine learning (ML) tasks, including sequence classification. However, these methods face two primary challenges:(i) the computational complexity associated with kernel computation, which involves an exponential time requirement for dot product calculation, and (ii) the scalability issue of storing the largen × nmatrix in memory when the number of data points(n) becomes too large. Although approximate methods can address the computational complexity problem, scalability remains a concern for conventional kernel methods. This paper presents a novel and efficient embedding method that overcomes both the computational and scalability challenges inherent in kernel methods. To address the computational challenge, our approach involves extracting thek-mers/nGrams (consecutive character substrings) from a given biological sequence, computing a sketch of the sequence, and performing dot product calculations using the sketch. By avoiding the need to compute the entire spectrum (frequency count) and operating with low-dimensional vectors (sketches) for sequences instead of the memory-intensiven × nmatrix or full-length spectrum, our method can be readily scaled to handle a large number of sequences, effectively resolving the scalability problem. Furthermore, conventional kernel methods often rely on limited algorithms (e.g., kernel SVM) for underlying ML tasks. In contrast, our proposed fast and alignment-free spectrum method can serve as input for various distance-based (e.g.,k-nearest neighbors) and non-distance-based (e.g., decision tree) ML methods used in classification and clustering tasks. We achieve superior prediction for coronavirus spike/Peplomer using our method on real biological sequences excluding full genomes. Moreover, our proposed method outperforms several state-of-the-art embedding and kernel methods in terms of both predictive performance and computational runtime.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3