Disruption of immunoglobulin heavy and light chain assembly by antisense oligonucleotides impairs protein homeostasis and myeloma cell survival

Author:

Horiot Catherine,Roussel MurielleORCID,Praité Antoine,Pollet Justine,Bender Sébastien,Sirac ChristopheORCID,Bonaud AmélieORCID,Delpy LaurentORCID

Abstract

ABSTRACTMultiple myeloma (MM) is related to the accumulation of malignant plasma cells (PCs) in the bone marrow. MM accounts for approximatively 10% of hematological malignancies and despite major improvement in therapies and outcomes, relapses will virtually occur in all patients. Usually, the disease goes along with an excess production of a monoclonal immunoglobulin (Ig) component by the tumor PC clone. However, many questions remain regarding the consequences of a deregulated Ig production on PC survival. Recent advances in RNA-based therapy using antisense oligonucleotides (ASO) prompted us to examine the impact of altered Ig heavy to light chain (HC/LC) ratios in MM cells. We designed a pan IgG subclasses specific ASO targeting a consensus sequence found in the polyadenylation signal (PAS) of all secretedIGHGmRNAs (IgG-ASO). Remarkably, treatment with this compound strongly decreased IgG secretion in MM cell lines and patient cells. Consistent with a deregulated HC/LC ratio, a dose-dependent excess of free-LCs (as monomers and dimers) was observed in myeloma cells treated with IgG-ASO, compared to an irrevelant control ASO (CTRL). RNA-seq profiles further indicated that the expression of genes involved in cellular metabolism, unfolded protein response (UPR) and cell death pathways were altered after treatment with IgG-ASO. Interestingly, impaired survival of primary IgG-expressing cells isolated from MM patients was achieved upon treatment with IgG-ASO, whereas no major effect was observed for healthy cells. Altogether, our data provide evidence for efficient inhibition of IgG secretion upon ASO treatment and suggest that an excess of free-LC due to disruption of HC/LC stoichiometry is toxic for MM cells expressing complete Ig. Such RNA-based strategies targeting PC in an Ig isotype-dependent manner could open new avenues for selective therapeutic approaches in PC dyscrasias.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3