Abstract
AbstractMany neurodegenerative diseases including frontotemporal lobar degeneration (FTLD), Lewy body disease (LBD), multiple system atrophy (MSA), etc., show colocalized deposits of TDP-43 and α-synuclein (αS) aggregates. To understand whether these colocalizations are driven by specific molecular interactions between the two proteins, we previously showed that the prion-like C-terminal domain of TDP-43 (TDP-43PrLD) and αS synergistically interact to form neurotoxic heterotypic amyloids in homogeneous buffer conditions. However, it remains unclear whether and how αS modulates TDP-43 present within liquid droplets and biomolecular condensates called stress granules (SGs). Here, using cell culture and in vitro TDP-43PrLD – RNA liquid droplets as models along with microscopy, nanoscale spatially-resolved spectroscopy, and other biophysical analyses, we uncover the interactions of αS with phase-separated droplets. We learn that αS acts as a Pickering agent by forming clusters on the surface of TDP-43PrLD – RNA droplets and emulsifying them. The ‘hardening’ of the droplets that follow by αS aggregates on the periphery, nucleates the formation of heterotypic TDP-43PrLD amyloid fibrils with structures distinct from those derived from homogenous solutions. Together, these results reveal an intriguing property of αS as a Pickering agent in interacting with SGs and unmask the hitherto unknown role of αS in modulating TDP-43 proteinopathies.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献