A dose-response based model for statistical analysis of chemical genetic interactions in CRISPRi libraries

Author:

Choudhery SanjeevaniORCID,DeJesus Michael A.ORCID,Srinivasan Aarthi,Rock Jeremy,Schnappinger Dirk,Ioerger Thomas R.

Abstract

AbstractAn important application of CRISPR interference (CRISPRi) technology is for identifying chemicalgenetic interactions (CGIs). Discovery of genes that interact with exposure to antibiotics can yield insights to drug targets and mechanisms of action or resistance. The premise is to look for CRISPRi mutants whose relative abundance is suppressed (or enriched) in the presence of a drug when the target protein is depleted, reflecting synergistic behavior. One thing that is unique about CRISPRi experiments is that sgRNAs for a given target can induce a wide range of protein depletion. The effect of sgRNA strength can be partially predicted based on sequence features or empirically quantified by a passaging experiment. sgRNA strength interacts in a non-linear way with drug sensitivity, producing an effect where the concentration-dependence is maximized for sgRNAs of intermediate strength (and less so for sgRNAs that induce too much or too little target depletion). sgRNA strength has not been explicitly accounted for in previous analytical methods for CRISPRi. We propose a novel method for statistical analysis of CRISPRi CGI data called CRISPRi-DR (for Dose-Response model). CRISPRi-DR incorporates data points from measurements of abundance at multiple inhibitor concentrations using a classic dose-response equation. Importantly, the effect of sgRNA strength can be incorporated into this model in a way that mimics the non-linear interaction between the two covariates on mutant abundance. We use CRISPRi-DR to re-analyze data from a recent CGI experiment inMycobacterium tuberculosisand show that genes known to interact with various anti-tubercular drugs are ranked highly. We observe similar results in MAGeCK, a related analytical method, for datasets of low variance. However, for noisier datasets, MAGeCK is more susceptible to false positives whereas CRISPRi-DR maintains higher precision, which we observed in both empirical and simulated data, due to CRISPRi-DR’s integration of data over multiple concentrations and sgRNA strengths.Author SummaryCRISPRi technology is revolutionizing research in various areas of the life sciences, including microbiology, affording the ability to partially deplete the expression of target proteins in a specific and controlled way. Among the applications of CRISPRi, it can be used to construct large (even genome-wide) libraries of knock-down mutants for profiling antibacterial inhibitors and identifying chemical-genetic interactions (CGIs), which can yield insights on drug targets and mechanisms of action and resistance. The data generated by these experiments (i.e., nucleotide barcode counts from high throughput sequencing) is voluminous and subject to various sources of noise. The goal of statistical analysis of such data is to identify significant CGIs, which are genes whose depletion sensitizes cells to an inhibitor. In this paper, we show how to incorporate both sgRNA strength and drug concentration simultaneously in a model (CRISPRi-DR) based on an extension of the classic dose-response (Hill) equation in enzymology. This model has advantages over other analytical methods for CRISPRi, which we show using empirical and simulated data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3