Abstract
AbstractRationaleNitric oxide (NO) has been identified as a signalling molecule generated during β-adrenergic receptor (AR) stimulation in the heart. Furthermore, a role for NO in triggering spontaneous Ca2+release viaS-nitrosylation of Ca2+/calmodulin kinase II delta (CaMKIIδ) is emerging. NO donors are routinely used clinically for their cardioprotective effects in the heart, but it is unknown how NO donors modulate the pro-arrhythmic CaMKII to alter cardiac arrhythmia incidence.ObjectiveWe test the role ofS-nitrosylation of CaMKIIδ at the Cys-273 inhibitory site and Cys-290 activating site in cardiac Ca2+handling and arrhythmogenesis before and during β-AR stimulation.Methods and ResultsWe measured Ca2+-handling in isolated cardiomyocytes from C57BL/6J wild-type (WT) mice and mice lacking CaMKIIδ expression (CaMKIIδ-KO) or with deletion of theS-nitrosylation site on CaMKIIδ at Cys-273 or Cys-290 (CaMKIIδ-C273S and -C290A knock-in mice). Cardiomyocytes were exposed to NO donors, S-nitrosoglutathione (GSNO; 150 μM), sodium nitroprusside (SNP; 200 μM) and/or β-adrenergic agonist isoproterenol (ISO; 100 nM). WT and CaMKIIδ-KO cardiomyocytes treated with GSNO showed no change in Ca2+transient or spark properties under baseline conditions (0.5 Hz stimulation frequency). Both WT and CaMKIIδ-KO cardiomyocytes responded to ISO with a full inotropic and lusitropic Ca2+transient response as well as increased Ca2+spark frequency. However, the increase in Ca2+spark frequency was significantly attenuated in CaMKIIδ-KO cardiomyocytes. The protection from ISO-induced Ca2+sparks and waves was mimicked by GSNO pre-treatment in WT cardiomyocytes, but lost in CaMKIIδ-C273S cardiomyocytes that displayed a robust increase in Ca2+waves. This observation is consistent with CaMKIIδ-C273S-nitrosylation being critical in limiting ISO-induced arrhythmogenic sarcoplasmic reticulum Ca2+leak. When GSNO was applied after ISO this protection was not observed in WT or CaMKIIδ-C273S but was apparent in CaMKIIδ-C290A. In Langendorff-perfused isolated hearts, GSNO pre-treatment limited ISO-induced arrhythmias in WT but not CaMKIIδ-C273S hearts, while GSNO exposure after ISO sustained or exacerbated arrhythmic events.ConclusionsWe conclude that priorS-nitrosylation of CaMKIIδ at Cys-273 can limit subsequent β-AR induced arrhythmias, but thatS-nitrosylation at Cys-290 might worsen or sustain β-AR-induced arrhythmias. This has important implications for the administration of NO donors in the clinical setting.
Publisher
Cold Spring Harbor Laboratory