Abstract
AbstractThe burgeoning comprehension of protein phase separation (PS) has ushered in a wealth of bioinformatics tools for the prediction of phase-separating proteins (PSPs). These tools often skew towards PSPs with a high content of intrinsically disordered regions (IDRs), thus frequently undervaluing potential PSPs without IDRs. Nonetheless, PS is not only steered by IDRs but also by the structured modular domains and interactions that aren’t necessarily reflected in amino acid sequences. In this work, we introduce PSPire, a unique machine learning predictor designed to incorporate both residue-level and structure-level features for the precise prediction of PSPs. Compared to current PSP predictors, PSPire shows a notable improvement in identifying PSPs without IDRs, which underscores the crucial role of non-IDR, structure-based characteristics in multivalent interactions throughout the PS process. Additionally, our biological validation experiments substantiate the predictive capacity of PSPire, with 6 out of the 8 chosen candidate PSPs confirmed to form condensates within cells. This highlights the considerable potential of structure-based models in the accurate prediction and comprehensive understanding of protein PS.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献