Author:
Gonzales Gerone A.,Huang Song,Rajwani Jahanara,Wilkinson Liam,Nguyen Jenny A.,Wood Cassandra M.,Dinh Irene,Moore Melanie,Cedeño Eymi,Sikdar Saif,McKenna Neil,Ebacher Vincent,Rosin Nicole L.,Carneiro Matheus B.,Surewaard Bas,Peters Nathan C.,Biernaskie Jeff,Mahoney Douglas J.,Yates Robin M.,Canton Johnathan
Abstract
AbstractType I conventional dendritic cells (cDC1s) are essential for the generation of protective cytotoxic T lymphocyte (CTL) responses against many types of viruses and tumours. They do so by internalizing antigens from virally infected or tumour cells and presenting them to CD8+T cells in a process known as cross-presentation (XP). Despite the obvious biological importance of XP, the molecular mechanism(s) driving this process remain unclear. Here, we show that a cDC-specific pore-forming protein called apolipoprotein 7C (APOL7C) is upregulated in response to innate immune stimuli and is recruited to phagosomes. Strikingly, the association of APOL7C with phagosomes leads to phagosomal rupture, which in turn allows for the escape of engulfed protein antigens to the cytosol where they can be processed via the endogenous major histocompatibility complex (MHC) class I antigen processing pathway. We show that APOL7C recruitment to phagosomes is voltage-dependent and occurs in response to NADPH oxidase-induced depolarization of the phagosomal membrane. Our data indicate the presence of dedicated pore-forming apolipoproteins that mediate the delivery of phagocytosed proteins to the cytosol of activated cDC1s to facilitate MHC class I presentation of exogenous antigen and to regulate adaptive immunity.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献