Compound models and Pearson residuals for normalization of single-cell RNA-seq data without UMIs

Author:

Lause JanORCID,Ziegenhain ChristophORCID,Hartmanis Leonard,Berens PhilippORCID,Kobak DmitryORCID

Abstract

AbstractBefore downstream analysis can reveal biological signals in single-cell RNA sequencing data, normalization and variance stabilization are required to remove technical noise. Recently, Pearson residuals based on negative binomial models have been suggested as an efficient normalization approach. These methods were developed for UMI-based sequencing protocols, where unique molecular identifiers (UMIs) help to remove PCR amplification noise by keeping track of the original molecules. In contrast, full-length protocols such as Smart-seq2 lack UMIs and retain amplification noise, making negative binomial models inapplicable. Here, we extend Pearson residuals to such read count data by modeling them as a compound process: we assume that the captured RNA molecules follow the negative binomial distribution, but are replicated according to an amplification distribution. Based on this model, we introduce compound Pearson residuals and show that they can be analytically obtained without explicit knowledge of the amplification distribution. Further, we demonstrate that compound Pearson residuals lead to a biologically meaningful gene selection and low-dimensional embeddings of complex Smart-seq2 datasets. Finally, we empirically study amplification distributions across several sequencing protocols, and suggest that they can be described by a broken power law. We show that the resulting compound distribution captures overdispersion and zero-inflation patterns characteristic of read count data. In summary, compound Pearson residuals provide an efficient and effective way to normalize read count data based on simple mechanistic assumptions.

Publisher

Cold Spring Harbor Laboratory

Reference68 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3