Acylation of MLKL impacts its function in necroptosis

Author:

Pradhan Apoorva J.,Chitkara Shweta,Ramirez Ricardo X.,Monje-Galvan Viviana,Sancak Yasemin,Atilla-Gokcumen G. Ekin

Abstract

ABSTRACTMixed lineage kinase domain-like (MLKL) is a key signaling protein of necroptosis. Upon activation by phosphorylation, MLKL translocates to the plasma membrane and induces membrane permeabilization which contributes to the necroptosis-associated inflammation. Membrane binding of MLKL is initially initiated by the electrostatic interactions between the protein and membrane phospholipids. We previously showed that MLKL and its phosphorylated form (pMLKL) areS-acylated during necroptosis. Here, we characterize acylation sites of MLKL and identify multiple cysteines that can undergo acylation with an interesting promiscuity at play. Our results show that MLKL and pMLKL undergo acylation at a single cysteine, C184, C269 and C286 are the possible acylation sites. Using all atom molecular dynamic simulations, we identify differences that the acylation of MLKL causes at the protein and membrane level. Through systematic investigations of theS-palmitoyltransferases that might acylate MLKL in necroptosis, we showed that zDHHC21 activity has the strongest effect on pMLKL acylation, inactivation of which profoundly reduced the pMLKL levels in cells and improved membrane integrity. These results suggest that blocking the acylation of pMLKL destabilizes the protein at the membrane interface and causes its degradation, ameliorating necroptotic activity. At a broader level, our findings shed light on the effect ofS-acylation on MLKL functioning in necroptosis and MLKL-membrane interactions mediated by its acylation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3