Sub-nucleolar trafficking of Hendra virus matrix protein is regulated by ubiquitination and oligomerisation

Author:

Rawlinson Stephen M.ORCID,Zhao Tianyue,David Cassandra T.,Veuglers Patrick F.,Rozario Ashley M.,Bell Toby D.M.,Moseley Gregory W.

Abstract

ABSTRACTHendra virus (HeV) is a highly pathogenic member of the Henipavirus genus (orderMononegavirales), the replication cycle of which occurs primarily in the cytoplasm. The HeV matrix protein (HeV M) plays critical roles in viral assembly and budding at the plasma membrane, but also undergoes nuclear/nucleolar trafficking, to accumulate in nucleoli early in infection and, later, localise predominantly at the plasma membrane. Previously we found that HeV M protein targets specific sub-nucleolar compartments (corresponding to the FC-DFC (fibrillar centre (FC)/dense fibrillar component (DFC)) where it interacts with the nucleolar protein Treacle and modulates rRNA biogenesis by subverting the host nucleolar DNA damage response, indicating the importance of specific sub-nucleolar trafficking to infection. However, the mechanisms underlying targeting and movement between sub-nucleolar compartments by viral or cellular proteins remain poorly defined. Here, we assessed the molecular regulation of HeV M protein nucleolar/sub-nucleolar trafficking, finding that HeV M localizes into Treacle-enriched FC-DFC early after expression, but this localization is progressively depleted through relocalization to the surrounding granular component (GC) of the nucleolus. Analysis using mutated M proteins and pharmacological modulation of ubiquitination indicate that this dynamic localization is regulated by ubiquitination and oligomerisation, with ubiquitination required for retention of HeV M in Treacle-enriched sub-nucleolar compartments, and oligomerisation required for egress. To our knowledge, this study provides the first direct insights into the dynamics and mechanisms of viral protein trafficking between sub-nucleolar compartment, shedding light on the intricate interplay between HeV M and host cell factors during infection.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3