Flexible Bayesian estimation of incubation times

Author:

Gressani OswaldoORCID,Torneri Andrea,Hens Niel,Faes Christel

Abstract

AbstractMotivationThe incubation period is of paramount importance in infectious disease epidemiology as it informs about the transmission potential of a pathogenic organism and helps to plan public health strategies to keep an epidemic outbreak under control. Estimation of the incubation period distribution from reported exposure times and symptom onset times is challenging as the underlying data is coarse.MethodologyWe develop a new Bayesian methodology using Laplacian-P-splines that provides a semi-parametric estimation of the incubation density based on a Langevinized Gibbs sampler. A finite mixture density smoother informs a set of parametric distributions via moment matching and an information criterion arbitrates between competing candidates.ResultsOur method has a natural nest within EpiLPS, a tool originally developed to estimate the time-varying reproduction number. Various simulation scenarios accounting for different levels of data coarseness are considered with encouraging results. Applications to real data on COVID-19, MERS-CoV and Mpox reveal results that are in alignment with what has been obtained in recent studies.ConclusionThe proposed flexible approach is an interesting alternative to classic Bayesian parametric methods for estimation of the incubation distribution.

Publisher

Cold Spring Harbor Laboratory

Reference41 articles.

1. Estimation of the basic reproduction number of COVID-19 from the incubation period distribution;The European Physical Journal Special Topics,2022

2. Nonparametric Bayesian estimation from interval-censored data using Monte Carlo methods;Journal of Statistical Planning and Inference,2001

3. Middle East respiratory syndrome coronavirus: quantification of the extent of the epidemic, surveillance biases, and transmissibility

4. Inferring time-varying generation time, serial interval, and incubation period distributions for COVID-19;Nature Communications,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3