Molecular layer disinhibition unlocks climbing-fiber-instructed motor learning in the cerebellum

Author:

Zhang Ke,Yang Zhen,Gaffield Michael A.,Gross Garrett G.,Arnold Don B.,Christie Jason M.

Abstract

AbstractClimbing fibers supervise cerebellar learning by providing signals to Purkinje cells (PCs) that instruct adaptive changes to mistakenly performed movements. Yet, climbing fibers are regularly active, even during well performed movements, suggesting that a mechanism dynamically regulates the ability of climbing fibers to induce corrective plasticity in response to motor errors. We found that molecular layer interneurons (MLIs), whose inhibition of PCs powerfully opposes climbing-fiber-mediated excitation, serve this function. Optogenetically suppressing the activity of floccular MLIs in mice during the vestibulo-ocular reflex (VOR) induces a learned increase in gain despite the absence of performance errors. Suppressing MLIs when the VOR is mistakenly underperformed reveled that their inhibitory output is necessary to orchestrate gain-increase learning by conditionally permitting climbing fibers to instruct plasticity induction during ipsiversive head turns. Ablation of an MLI circuit for PC disinhibition prevents gain-increase learning during VOR performance errors which was rescued by re-imposing PC disinhibition through MLI activity suppression. Our findings point to a decisive role for MLIs in gating climbing-fiber-mediated learning through their context-dependent inhibition of PCs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3