Identifying residues in unfolded whole proteins with a nanopore: a theoretical model based on linear inequalities

Author:

Sampath G.

Abstract

AbstractA theoretical model is proposed for the identification of individual amino acids (AAs) in an unfolded whole protein’s primary sequence. It is based in part on a recent report (Nat. Biotech. 41, 1130–1139, 2023) that describes the unfolding and translocation of whole proteins at constant speed through a biological nanopore (alpha-Hemolysin) of length 5 nm with a residue dwell time inside the pore of ∼10 μs. Here current blockade levels in the pore due to the translocating protein are assumed to be measured with a limited precision of 70 nm3and a bandwidth of 20 KHz for measurement with a low-bandwidth detector. Exclusion volumes in two pores of slightly different lengths are used as a computational proxy for the blockade signal; subsequence exclusion volume differences along the protein sequence are computed from the sampled translocation signals in the two pores relatively shifted multiple times. These are then converted into a system of linear inequalities that can be solved with linear programming and related methods; residues are coarsely identified as belonging to one of 4 subsets of the 20 standard AAs. To obtain the exact identity of a residue an artifice analogous to the use of base-specific tags for DNA sequencing with a nanopore (PNAS113, 5233–5238, 2016) is used. Conjugates that add volume are attached to a given AA type, this biases the set of inequalities toward the volume of the conjugated AA, from this biased set the position of occurrence of every residue of the AA type in the whole sequence is extracted. By applying this step separately to each of the 20 standard AAs the full sequence can be obtained. The procedure is illustrated with a protein in the human proteome (Uniprot id UP000005640_9606).

Publisher

Cold Spring Harbor Laboratory

Reference33 articles.

1. E. de Hoffmann and V. Stroobant . Mass Spectrometry: Principles and Applications, 3rd edn., Wiley, 2007.

2. “Precision proteomics: the case for high resolution and high mass accuracy;PNAS,2008

3. Counting protein molecules for single-cell proteomics

4. Sampling the proteome by emerging single-molecule and mass spectrometry methods

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3