Ligand-DisplayingE. coliCells and Minicells for Programmable Delivery of Toxic Payloads via Type IV Secretion Systems

Author:

Li Yang Grace,Kishida Kouhei,Ogawa-Kishida Natsumi,Christie Peter J.ORCID

Abstract

ABSTRACTBacterial type IV secretion systems (T4SSs) are highly versatile macromolecular translocators and offer great potential for deployment as delivery systems for therapeutic intervention. One major T4SS subfamily, the conjugation machines, are well-adapted for delivery of DNA cargoes of interest to other bacteria or eukaryotic cells, but generally exhibit modest transfer frequencies and lack specificity for target cells. Here, we tested the efficacy of a surface-displayed nanobody/antigen (Nb/Ag) pairing system to enhance the conjugative transfer of IncN (pKM101), IncF (F/pOX38), or IncP (RP4) plasmids, or of mobilizable plasmids including those encoding CRISPR/Cas9 systems (pCrispr), to targeted recipient cells.Escherichia colidonors displaying Nb’s transferred plasmids toE. coliandPseudomonas aeruginosarecipients displaying the cognate Ag’s at significantly higher frequencies than to recipients lacking Ag’s. Nb/Ag pairing functionally substituted for the surface adhesin activities of F-encoded TraN and pKM101-encoded Pep, although not conjugative pili or VirB5-like adhesins. Nb/Ag pairing further elevated the killing effects accompanying delivery of pCrispr plasmids toE. coliandP. aeruginosatransconjugants bearing CRISPR/Cas9 target sequences. Finally, we determined that anucleateE. coliminicells, which are clinically safer delivery vectors than intact cells, transferred self-transmissible and mobilizable plasmids toE. coliandP. aeruginosacells. Minicell-mediated mobilization of pCrispr plasmids toE. colirecipients elicited significant killing of transconjugants, although Nb/Ag pairing did not enhance conjugation frequencies or killing. Together, our findings establish the potential for deployment of bacteria or minicells as Programmed Delivery Systems (PDSs) for suppression of targeted bacterial species in infection settings.IMPORTANCEThe rapid emergence of drug-resistant bacteria and current low rate of antibiotic discovery emphasize an urgent need for alternative antibacterial strategies. We engineeredEscherichia colito conjugatively transfer plasmids to specificE. coliandPseudomonas aeruginosarecipient cells through surface display of cognate nanobody/antigen (Nb/Ag) pairs. We further engineered mobilizable plasmids to carry CRISPR/Cas9 systems (pCrispr) for selective killing of recipient cells harboring CRISPR/Cas9 target sequences. In the assembled Programmed Delivery System (PDS), Nb-displayingE. colidonors with different conjugation systems and mobilizable pCrispr plasmids suppressed growth of Ag-displaying recipient cells to significantly greater extents than unpaired recipients. We also showed that anucleate minicells armed with conjugation machines and pCrispr plasmids were highly effective in killing ofE. colirecipients. Together, our findings suggest that bacteria or minicells armed with PDSs may prove highly effective as an adjunct or alternative to antibiotics for antimicrobial intervention.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3