Abstract
AbstractSeveral midbrain nuclei degenerate in Parkinson’s Disease (PD). Many of these nuclei share the common characteristics that are thought to contribute to their selective vulnerability, including pacemaking activity and high levels of calcium influx. In addition to the well-characterized dopaminergic neurons of the substantia nigra pars compacta (SNc), the cholinergic neurons of the pedunculopontine nucleus (PPN) also degenerate in PD. It is well established that the low-threshold L-type calcium current is a main contributor to tonic calcium in SNc dopaminergic neurons and is hypothesized to contribute to their selective vulnerability. However, it is not yet clear whether the vulnerable PPN cholinergic neurons share this property. Therefore, we used two-photon dendritic calcium imaging and whole-cell electrophysiology to evaluate the role of L-type calcium channels in the tonic and phasic activity of PPN neurons and the corresponding dendritic calcium signal and directly compare these characteristics to SNc neurons. We found that blocking L-type channels reduces tonic firing rate and dendritic calcium levels in SNc neurons. By contrast, the calcium load in PPN neurons during pacemaking did not depend on L-type channels. However, we find that blocking L-type channels reduces phasic calcium influx in PPN dendrites. Together, these findings show that L-type calcium channels play different roles in the activity of SNc and PPN neurons, and suggest that low-threshold L-type channels are not responsible for tonic calcium levels in PPN cholinergic neurons and are therefore not likely to be a source of selective vulnerability in these cells.
Publisher
Cold Spring Harbor Laboratory