Inferring laminar origins of MEG signals with optically pumped magnetometers (OPMs): a simulation study

Author:

Helbling SaskiaORCID

Abstract

AbstractWe explore the potential of optically-pumped magnetometers (OPMs) to infer the laminar origins of neural activity non-invasively. OPM sensors can be positioned closer to the scalp than conventional cryogenic MEG sensors, opening an avenue to higher spatial resolution when combined with high-precision forward modelling. By simulating the forward model projection of single dipole sources onto OPM sensor arrays with varying sensor densities and measurement axes, and employing sparse source reconstruction approaches, we find that laminar inference with OPM arrays is possible at relatively low sensor counts at moderate to high signal-to-noise ratios (SNR). We observe improvements in laminar inference with increasing spatial sampling densities and number of measurement axes. Surprisingly, moving sensors closer to the scalp is less advantageous than anticipated - and even detrimental at high SNRs. Biases towards both the superficial and deep surfaces at very low SNRs and a notable bias towards the deep surface when combining empirical Bayesian beamformer (EBB) source reconstruction with a whole-brain analysis pose further challenges. Adequate SNR through appropriate trial numbers and shielding, as well as precise co-registration, is crucial for reliable laminar inference with OPMs.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3