An Allee-based Distributed Algorithm for Microbial Whole-Cell Sensors

Author:

Cravo Fabricio,Függer MatthiasORCID,Nowak ThomasORCID

Abstract

AbstractReliable detection of substances present at potentially low concentrations is a problem common to many biomedical applications. Complementary to well-established enzyme-, antibody-antigen-, and sequencing-based approaches, so-called microbial whole-cell sensors, i.e., synthetically engineered microbial cells that sense and report substances, have been proposed as alternatives. Typically these cells operate independently: a cell reports an analyte upon local detection.In this work, we analyze a distributed algorithm for microbial whole-cell sensors, where cells communicate to coordinate if an analyte has been detected. The algorithm, inspired by the Allee effect in biological populations, causes cells to alternate between a logical 0 and 1 state in response to reacting with the particle of interest. When the cells in the logical 1 state exceed a threshold, the algorithm converts the remaining cells to the logical 1 state, representing an easily-detectable output signal. We validate the algorithm through mathematical analysis and simulations, demonstrating that it works correctly even in noisy cellular environments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3