Comparative transcriptional analysis ofCandida aurisbiofilms following farnesol and tyrosol treatment

Author:

Jakab Ágnes,Kovács Fruzsina,Balla Noémi,Nagy-Köteles Csaba,Ragyák Ágota,Nagy Fruzsina,Borman Andrew M,Majoros László,Kovács Renátó

Abstract

AbstractCandida aurisis frequently associated with biofilm-related invasive infections. The resistant profile of these biofilms necessitates innovative therapeutic options, where quorum sensing may be a potential target. Farnesol and tyrosol are two fungal quorum-sensing molecules with antifungal effects at supraphysiological concentrations. To date there has been no high-throughput comparative molecular analysis regarding the background of farnesol– or tyrosol-related effects againstC. aurisbiofilms. Here, we performed genome-wide transcript profiling withC. aurisbiofilms following 75 μM farnesol or 15 mM tyrosol exposure using transcriptome sequencing (RNA-Seq). The analysis highlighted that the number of up-regulated genes (a minimum 1.5-fold increase) was 686 and 138 for tyrosol and farnesol, respectively, while 662 and 199 genes were down-regulated (a minimum 1.5-fold decrease) for tyrosol and farnesol, respectively. The overlap between tyrosol– and farnesol-responsive genes was considerable (101 and 116 overlapping up-regulated and down-regulated genes, respectively). Genes involved in biofilm events, glycolysis, ergosterol biosynthesis, fatty acid oxidation, iron metabolism, and autophagy were primarily affected in treated cells. Farnesol caused an 89.9%, 73.8%, and 32.6% reduction in the calcium, magnesium, and iron content, respectively, whereas tyrosol resulted an 82.6%, 76.6%, and 81.2% decrease in the calcium, magnesium, and iron content compared to the control, respectively. Moreover, the complexation of farnesol, but not tyrosol, with ergosterol is impeded in the presence of exogenous ergosterol, resulting in a minimum inhibitory concentration increase in the quorum-sensing molecules. This study revealed several farnesol– and tyrosol-specific responses, which will contribute to the development of alternative therapies againstC. aurisbiofilms.ImportanceCandida aurisis a multidrug-resistant fungal pathogen, which is frequently associated with biofilm related infections.Candida-derived quorum-sensing molecules (farnesol and tyrosol) play a pivotal role in the regulation of fungal morphogenesis and biofilm development. Furthermore, they may have remarkable anti-biofilm effects, especially at supraphysiological concentrations. Innovative therapeutic approaches interfering with quorum-sensing may be a promising future strategy againstC. aurisbiofilms; however, limited data are currently available concerning farnesol-induced and tyrosol-related molecular effects inC. auris. Here, we detected several genes involved in biofilm events, glycolysis, ergosterol biosynthesis, fatty acid oxidation, iron metabolism, and autophagy, which were primarily influenced following farnesol or tyrosol exposure. Moreover, calcium, magnesium, and iron homeostasis were also significantly affected. These results reveal molecular events that provide definitive explanations for the observed anti-biofilm effect; furthermore, they support the development of novel therapeutic approaches againstC. aurisbiofilms.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3