AORTA Gene: Polygenic prediction improves detection of thoracic aortic aneurysm

Author:

Pirruccello James P.ORCID,Khurshid ShaanORCID,Lin Honghuang,Weng Lu-ChenORCID,Zamirpour SiavashORCID,Kany Shinwan,Raghavan Avanthi,Koyama SatoshiORCID,Vasan Ramachandran S.ORCID,Benjamin Emelia J.ORCID,Lindsay Mark E.ORCID,Ellinor Patrick T.ORCID

Abstract

AbstractBackgroundThoracic aortic disease is an important cause of morbidity and mortality in the US, and aortic diameter is a heritable contributor to risk. Could a polygenic prediction of ascending aortic diameter improve detection of aortic aneurysm?MethodsDeep learning was used to measure ascending thoracic aortic diameter in 49,939 UK Biobank participants. A genome-wide association study (GWAS) was conducted in 39,524 participants and leveraged to build a 1.1 million-variant polygenic score withPRScs-auto. Aortic diameter prediction models were built with the polygenic score (“AORTA Gene”) and without it. The models were tested in a held-out set of 4,962 UK Biobank participants and externally validated in 5,469 participants from Mass General Brigham Biobank (MGB), 1,298 from the Framingham Heart Study (FHS), and 610 participants fromAll of Us.ResultsIn each test set, the AORTA Gene model explained more of the variance in thoracic aortic diameter compared to clinical factors alone: 39.9% (95% CI 37.8-42.0%) vs 29.2% (95% CI 27.1-31.4%) in UK Biobank, 36.5% (95% CI 34.4-38.5%) vs 32.5% (95% CI 30.4-34.5%) in MGB, 41.8% (95% CI 37.7-45.9%) vs 33.0% (95% CI 28.9-37.2%) in FHS, and 34.9% (95% CI 28.8-41.0%) vs 28.9% (95% CI 22.9-35.0%) inAll of Us. AORTA Gene had a greater AUROC for identifying diameter ≥4cm in each test set: 0.834 vs 0.765 (P=7.3E-10) in UK Biobank, 0.808 vs 0.767 in MGB (P=4.5E-12), 0.856 vs 0.818 in FHS (P=8.5E-05), and 0.827 vs 0.791 (P=7.8E-03) inAll of Us.ConclusionsGenetic information improved estimation of thoracic aortic diameter when added to clinical risk factors. Larger and more diverse cohorts will be needed to develop more powerful and equitable scores.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3