Characterising the neurobiological mechanisms of action of exercise and cognitive behavioural interventions for rheumatoid arthritis fatigue: an MRI brain study

Author:

Dehsarvi AmirORCID,Al-Wasity Salim,Stefanov KristianORCID,Wiseman StewartORCID,Ralston StuartORCID,Wardlaw JoannaORCID,Emsley RichardORCID,Bachmair Eva-Maria,Cavanagh JonathanORCID,Waiter Gordon D.ORCID,Basu NeilORCID

Abstract

AbstractBackgroundChronic Fatigue is a major clinical unmet need among patients with Rheumatoid Arthritis (RA). Current therapies are limited to non-pharmacological interventions, such as personalised exercise programmes (PEP) and cognitive behavioural approaches (CBA), however, still most patients continue to report severe fatigue. To inform more effective therapies, we conducted an MRI brain study of PEP and CBA, nested within a randomised controlled trial (RCT), to identify their neurobiological mechanisms of fatigue reduction in RA.MethodsA sub-group of RA subjects (n=90), participating in a RCT of PEP/CBA for fatigue, undertook a multi-modal MRI brain scan following randomisation to either usual care (UC) alone or in addition to PEP/CBA, and again after the intervention (6 months). Brain regional volumetric, functional, and structural connectivity indices were curated and then computed employing a causal analysis framework. The primary outcome was fatigue improvement (Chalder Fatigue Scale).FindingsSeveral structural and functional connections were identified as mediators of fatigue improvement in both PEP and CBA compared to UC. PEP had a more pronounced effect on functional connectivity than CBA, however, structural connectivity between the left isthmus cingulate cortex (L-ICC) and left paracentral lobule (L-PCL) was shared and the size of mediation effect ranked highly for both PEP/CBA (ßAverage=-0·46, SD 0·61; ßAverage=-0·32, SD 0·47, respectively).InterpretationThe structural connection between the L-ICC and L-PCL appears to be a dominant mechanism for how both PEP/CBA reduces fatigue among RA patients. This supports its potential as a substrate of fatigue neurobiology and a putative candidate for future targeting.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3