How do plant RNA viruses overcome the negative effect of Muller’s ratchet despite strong transmission bottlenecks?

Author:

Lafforgue GuillaumeORCID,Lefebvre MarieORCID,Michon ThierryORCID,Elena Santiago F.ORCID

Abstract

ABSTRACTMuller’s ratchet refers to the irreversible accumulation of deleterious mutations in small populations, resulting in a decline in overall fitness. This phenomenon has been extensively observed in experiments involving microorganisms, including bacteriophages and yeast. While the impact of Muller’s ratchet on viruses has been largely studied in bacteriophages and animal RNA viruses, its effects on plant RNA viruses remain poorly documented. Plant RNA viruses give rise to large and diverse populations that undergo significant bottlenecks during the colonization of distant tissues or through vector-mediated horizontal transmission. In this study, we aim to investigate the role of bottleneck size, the maximum population size between consecutive bottlenecks, and the generation of genetic diversity in countering the effects of Muller’s ratchet. We observed three distinct evolutionary outcomes for tobacco etch virus under three different demographic conditions: (i) a decline in fitness following periodic severe bottlenecks inChenopodium quinoa, (ii) a consistent fitness level with moderate bottlenecks inC. quinoa, and (iii) a net increase in fitness when severe bottlenecks inC. quinoawere alternated with large population expansions inNicotiana tabacum. By fitting empirical data to anin silicosimulation model, we found that initiating a lesion inC. quinoarequired only 1-5 virions, and approximately 40 new virions were produced per lesion. These findings demonstrate that Muller’s ratchet can be halted not only by increasing the number of founder viruses but also by incorporating phases of exponential growth to large populations between bottlenecks. Such population expansions generate genetic diversity, serving as a buffer against, and potentially even leveraging, the effects of genetic drift.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3