Loss of synaptopodin impairs mGluR5 and protein synthesis dependent mGluR-LTD at CA3-CA1 synapses

Author:

Wu Pei You,Ji Linjia,De Sanctis Claudia,Francesconi Anna,Inglebert Yanis,McKinney R. Anne

Abstract

AbstractMetabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) is an important form of synaptic plasticity that occurs in many regions of the CNS and is the underlying mechanism for several learning paradigms. In the hippocampus, mGluR-LTD is manifested by the weakening of synaptic transmission and elimination of dendritic spines. Interestingly, not all spines respond or undergo plasticity equally in response to mGluR-LTD. A subset of dendritic spines containing synaptopodin (SP), an actin-associated protein, are critical for mGluR-LTD and protect spines from elimination through mGluR1 activity. The precise cellular function of SP is still enigmatic and it is still unclear how SP contributes to the functional aspect of mGluR-LTD despite of its modulation on the structural plasticity. In the present study, we show that the lack of SP impairs mGluR-LTD by negatively affecting the mGluR5-dependent activity. Such impairment of mGluR5 activity is accompanied by a significant decrease of surface mGluR5 level in SP knockout (SPKO) mice. Intriguingly, the remaining mGluR-LTD becomes a protein synthesis-independent process in the SPKO and is mediated instead by endocannabinoid signaling. These data show for the first time that the postsynaptic protein SP can regulate the locus of expression of mGluR-LTD and provide insight to our understanding of spine/synapse-specific plasticity.Significance statementHippocampal group I metabotropic glutamate receptor dependent long-term depression (mGluR-LTD), a form of learning and memory, is misregulated in many murine models of neurodevelopmental disorders. Despite extensive studies there is a paucity of information on the molecular mechanism underlying mGluR-LTD. Previously, we reported that loss of synaptopodin, an actin-associated protein found in a subset of mature dendritic spines, impairs mGluR-LTD. In the current study, we uncover the molecular and cellular deficits involved. We find that synaptopodin is required for the mGluR5-Homer interaction and uncover synaptopodin as a molecular switch for mGluR-LTD expression, as mGluR-LTD becomes protein synthesis-independent and relies on endocannabinoid signaling in synaptopodin knock-out. This work provides insight into synaptopodin as a gatekeeper to regulate mGluR-LTD at hippocampal synapses.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3