Deep metric learning for few-shot X-ray image classification

Author:

Prokop JakubORCID,Tordera Javier MontaltORCID,Jaworek-Korjakowska JoannaORCID,Mohammadi Sadegh

Abstract

AbstractDeep learning models have proven the potential to aid professionals with medical image analysis, including many image classification tasks. However, the scarcity of data in medical imaging poses a significant challenge, as the limited availability of diverse and comprehensive datasets hinders the development and evaluation of accurate and robust imaging algorithms and models. Few-shot learning approaches have emerged as a potential solution to address this issue. In this research, we propose to deploy the Generalized Metric Learning Model for Few-Shot X-ray Image Classification. The model comprises a feature extractor to embed images into a lower-dimensional space and a distance-based classifier for label assignment based on the relative distance of these embeddings. We extensively evaluate the model using various pre-trained convolutional neural networks (CNNs) and vision transformers (ViTs) as feature extractors. We also assess the performance of the commonly used distance-based classifiers in several few-shot settings. Finally, we analyze the potential to adapt the feature encoders to the medical domain with both supervised and self-supervised frameworks. Our model achieves 0.689 AUROC in 2-way 5-shot COVID-19 recognition task when combined with REMEDIS (Robust and Efficient Medical Imaging with Self-supervision) domain-adapted model as feature extractor, and 0.802 AUROC in 2-way 5-shot tuberculosis recognition task with domain-adapted DenseNet-121 model. Moreover, the simplicity and flexibility of our approach allows for easy improvement in the feature, either by incorporating other few-shot methods or new, powerful architectures into the pipeline.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dual-Channel Prototype Network for Few-Shot Pathology Image Classification;IEEE Journal of Biomedical and Health Informatics;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3