Large-scale analyses reveal the contribution of adaptive evolution in pathogenic and non-pathogenic fungal species

Author:

Pereira DaniloORCID,Bolton Melvin DORCID,Friesen Timothy LORCID,Stephan WolfgangORCID,Dutheil Julien YORCID,Stukenbrock Eva HORCID

Abstract

AbstractGenome studies of fungal pathogens have presented evidence for exceptionally high rates of evolution. It has been proposed that rapid adaptation is a hallmark of pathogen evolution that facilitates the invasion of new host niches and the overcoming of intervention strategies such as fungicide applications and drug treatments. To which extent high levels of genetic variation within and between species correlate with adaptive protein evolution in fungi more generally has so far not been explored. In this study, we addressed the contribution of adaptive evolution relative to genetic drift in 20 fungal species, hereby exploring genetic variation in 2,478 fungal genomes. We reannotated positions of protein-coding genes to obtain a high-quality dataset of 234,427 full-length core gene and 25,612 accessory gene alignments. We applied an extension of the McDonald-Kreitman test that models the distributions of fitness effects to infer the rate of adaptive (ωA) and non-adaptive (ωNA) non-synonymous substitutions in protein-coding genes. To explore the relevance of recombination on local adaptation rates, we inferred the population genomic recombination rate for all 20 species. Our analyses reveal extensive variation in rates of adaptation and show that high rates of adaptation are not a hallmark of a pathogenic lifestyle. Up to 83% of non-synonymous substitutions are adaptive in the speciesParastagonospora nodorum. However, non-synonymous substitutions in other species, including the prominent rice-infecting pathogenMagnaporthe oryzae, are predominantly non-adaptive (neutral or slightly deleterious). Correlating adaptation measures with effective population size and recombination rate, we show that effective population size is a primary determinant of adaptive evolution in fungi. At the genome scale, recombination rate variation explains variation in both ωAand ωNA. Finally, we demonstrate the robustness of our estimates using simulations. We underline the value of population genetic principles in studies of fungal evolution, and we highlight the importance of demographic processes in adaptive evolution of pathogenic and non-pathogenic species.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3