3D Printed Ti3C2TxMXene/PCL Scaffolds for Guided Neuronal Growth and Photothermal Stimulation

Author:

Li Jianfeng,Hashemi Payam,Liu Tianyi,Dang Ka My,Brunk Michael G.K.,Mu Xin,Nia Ali Shaygan,Sacher Wesley D.,Feng Xinliang,Poon Joyce K. S.

Abstract

AbstractThe exploration of neural circuitry is essential for understanding the computational mechanisms and physiology of the brain. Despite significant advances in materials and fabrication techniques, controlling neuronal connectivity and response in three dimensions continues to present a formidable challenge. Here, we present a method for engineering the growth of three-dimensional (3D) neural circuits with the capability for optical stimulation. We fabricated bioactive interfaces by melt electrospinning writing (MEW) of 3D printed polycaprolactone (PCL) scaffolds followed by coating with titanium carbide (Ti3C2TxMXene). Beyond enhancing hydrophilicity, cell adhesion, and electrical conductivity, the Ti3C2TxMXene coating enabled optocapacitance-based neuronal stimulation due to illumination-induced local temperature increases. This work presents a strategy for additive manufacturing of neural tissues with optical control for functional tissue engineering and neural circuit computation.

Publisher

Cold Spring Harbor Laboratory

Reference56 articles.

1. Abeles, M. , Corticonics: Neural Circuits of the Cerebral Cortex. 1991, Cambridge: Cambridge University Press.

2. A stable brain from unstable components: Emerging concepts and implications for neural computation

3. Maass, W. , et al., Brain Computation: A Computer Science Perspective. 2019. p. 184–199.

4. Induction of specific brain oscillations may restore neural circuits and be used for the treatment of Alzheimer's disease

5. Institute of, M. and C. National Research, The National Academies Collection: Reports funded by National Institutes of Health, in International Animal Research Regulations: Impact on Neuroscience Research: Workshop Summary. 2012, National Academies Press (US) Copyright © 2012, National Academy of Sciences.: Washington (DC).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3