Mechanism of Phosphate Release from Actin Filaments

Author:

Wang YihangORCID,Wu JiangboORCID,Zsolnay Vilmos,Pollard Thomas D.,Voth Gregory A.

Abstract

AbstractAfter ATP-actin monomers assemble filaments, the γ-phosphate is hydrolyzed from ATP within seconds and dissociates from the filament over several minutes. We used all-atom well-tempered metadynamics molecular dynamics simulations to sample the release of phosphate from filaments along with unbiased molecular dynamics simulations to study residues that gate release. Dissociation of phosphate from Mg2+is rate limiting and associated with an energy barrier of 20 kcal/mol, consistent with experimental rates of phosphate release. Phosphate then diffuses in an internal cavity toward a gate formed by R177 suggested in prior computational studies and cryo-EM structures. The gate is closed when R177 hydrogen bonds with N111 and is open when R177 forms a salt bridge with D179. Most of the time interactions of R177 with other residues occludes the phosphate release pathway. Machine learning analysis reveals that the occluding interactions fluctuate rapidly. These occluded states have not been documented in cryo-EM reconstructions.Significance StatementThe protein actin assembles into filaments that participate in muscle contraction and other cellular movements. An ATP bound to the actin monomer is hydrolyzed rapidly during filament assembly, but the γ-phosphate dissociates very slowly from the filament. We identified the dissociation of phosphate from Mg2+as the rate-limiting step in phosphate release from actin based on an energy barrier that aligns with the experimentally determined release rate. Release of phosphate from the protein requires opening a gate in the actin molecule formed by interaction of the sidechains of arginine 177 and asparagine 111. Surprisingly, the simulations revealed other interactions of the sidechain of arginine 177 that occlude the release pathway most of the time but have not been observed in the low temperature cryo-EM structures.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3