Phosphorylation-controlled cohesion of a nuclear condensate regulates mRNA retention

Author:

McIntyre Alexa B. R.ORCID,Tschan Adrian BeatORCID,Meyer KatrinaORCID,Walser SeverinORCID,Rai Arpan KumarORCID,Fujita KeisukeORCID,Pelkmans LucasORCID

Abstract

AbstractNuclear speckles are membraneless organelles that associate with active transcription sites and participate in post-transcriptional mRNA processing. During the cell cycle, nuclear speckles dissolve following phosphorylation of their protein components. Here, we identify the PP1 family as the phosphatases that counteract kinase-mediated dissolution. PP1 overexpression increases speckle cohesion and leads to retention of polyadenylated RNA within speckles and the nucleus. Using APEX2 proximity labeling combined with RNA-sequencing, we characterized the relationship between the cohesion of nuclear speckles and the recruitment of specific RNAs. We find that many transcripts are preferentially enriched within nuclear speckles compared to the nucleoplasm, particularly chromatin- and nucleus-associated transcripts. While total polyadenylated RNA retention increased with nuclear speckle cohesion, the ratios of most mRNA species to each other were constant, indicating non-selective, or proportional, retention. We then explored whether nuclear speckle cohesion changes in response to environmental perturbations associated with changes in kinase or phosphatase activity. We found that cellular responses to heat shock, oxidative stress, and hypoxia include changes to the cohesion of nuclear speckles and mRNA retention. Our results demonstrate that tuning the material properties of nuclear speckles provides a mechanism for the acute control of mRNA localization.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3