Abstract
AbstractThis cross-sectional study aimed to identify and validate cut-points for measuring physical activity using Axivity AX6 accelerometers positioned at the shank in older adults. Free-living physical activity was assessed in 35 adults aged 55 and older, where each participant wore a shank mounted Axivity and a waist mounted ActiGraph simultaneously for 72 hours. Optimized cut-points for each participant’s Axivity data were determined using an optimization algorithm to align with ActiGraph results. To assess validity between the physical activity assessments from the optimized Axivity cut-points, a leave-one-out cross validation was conducted. Bland-Altman plots with 95% limits of agreement, intraclass correlation coefficients (ICC), and mean differences were used for comparing the systems. The results indicated good agreement between the two accelerometers when classifying sedentary behaviour (ICC = 0.85) and light physical activity (ICC = 0.80), and moderate agreement when classifying moderate physical activity (ICC = 0.67) and vigorous physical activity (ICC = 0.70). Upon removal of a significant outlier, the agreement was slightly improved for sedentary behaviour (ICC = 0.86) and light physical activity (ICC = 0.82), but substantially improved for moderate physical activity (ICC = 0.81) and vigorous physical activity (ICC = 0.96). Overall, the study successfully demonstrated the capability of the resultant cut-point model to accurately classify physical activity using Axivity AX6 sensors placed at the shank.
Publisher
Cold Spring Harbor Laboratory